

Water Analysis Kit

Part No. 144-95

Instruction Manual

Updated 8/27/2013 Ver. 1.1

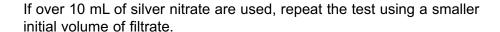
OFI Testing Equipment, Inc.

11302 Steeplecrest Dr. · Houston, Texas · 77065 · U.S.A. Tele: 832.320.7300 · Fax: 713.880.9886 · www.ofite.com

Table of Contents

Components	2
Chloride Ion Content	3
Alkalinity	4
Filtrate	4
Fluid	4
Lime	5
Total Hardness as Calcium	6
Calcium Content	7
Magnesium Content	7
Calcium Sulfate	8
Iron Count	9
Sulfide Ion (S-2)	10

Components


Labware:	
#144-95-001	Auto Self-Zeroing Buret
#145-601	Hydrogen Sulfide Test Papers, Package of 100
#145-602	Hydrogen Sulfide Test Bottle with Cap
#145-603	Hydrogen Sulfide Color Chart with Instructions
#145-604	Alka Seltzer Tablets, Packet of 2
#147-50	pH Paper; Hydrion Dispenser; pH 2 - 10, 1 - 11
#153-12	Glass Graduated Cylinder; 100 mL × 1 mL
#153-15	Test Tube; 15 mm × 125 mm
#153-26	Polyethylene Titration Dish
#153-28	Polyethylene Stirring Rod; 4"
#153-34	Glass Pipette; 1 mL × 1/100 mL
#153-40	Glass Pipette; 10 mL × 1/10 mL
#153-75	3/16" Tygon Tubing; 4 Feet
#153-76	5/16" Tygon Tubing; 4 Feet
#153-83	#3 Rubber Stopper; One Hole
	•
Reagents:	
#145-551	Starch Indicator Solution; 2 oz.
#145-552	*Sulfide Buffer Solution; 2 oz.; UN #1789
#145-553	lodine Titrating Solution, 8 oz.
#147-30	Buffer Solution; pH 7; 16 oz.
#200-10-1	3% Hydrogen Peroxide; 2 oz.
#205-02	Versenate Hardness Indicator Solution; 2 oz.
#205-04	*Versenate Hardness Buffer Solution; 2 oz.; UN #2672
#205-12	Versenate Hardness Titration Solution; 1 mL = 20 EPM
#205-14	*Versenate Calcium Buffer Solution; 2 oz.; UN #1842
#206-04	Deionized Water; 32 oz.
#210-00	Cal Ver II Indicator; 10 g
#215-00	Potassium Chromate Solution; 2 oz.
#220-00	Phenolphthalein Solution; 2 oz.
#230-04	*Sulfuric Acid; N/50; 16 oz.; UN #2796
#230-15	*Sulfuric Acid; 5 N; 2 oz.; UN #2796
#240-00	Methyl Orange Indicator Solution; 2 oz.
#250-00	Calcium Indicator Solution; 2 oz.
#255-00	*Sulfate Indicator Solution; 2 oz.; UN #1789
#265-08	Silver Nitrate Solution; .01 g; 0.282 N; 16 oz.
#275-00	*Hydrochloric Acid; 37%; Concentrated; 2 oz.; UN #1789
#285-37	Iron Indicator Solution; 2 oz.
#285-40	Iron Buffer Solution; 2 oz.
Case:	

#144-96 Stainless Steel Case

Chloride Ion Content

Procedure:

- 1. Add at least 1 mL filtrate to a clean titration dish.
- 2. Add two or three drops of phenolphthalein solution. If the sample turns pink, add sulfuric acid (N/50), drop by drop, until it turns clear again.
- 3. If the filtrate is colored, add an additional 2 mL of sulfuric acid (N/50) and stir. Add 1 gram of calcium carbonate and stir.
- 4. Add 25 to 50 mL deionized water and 5 to 10 drops of potassium chromate solution.
- 5. While stirring continuously, add silver nitrate solution (0.282N) from a pipette until the color changes from yellow to deep red. The color must stay red for at least 30 seconds.
- 6. Record the volume (in mL) of silver nitrate required to reach the end point.

Calculation:

Chloride (mg / L) =
$$\frac{\text{mL Silver Nitrate} \times 10,000}{\text{mL Filtrate}}$$


If the chloride ion concentration is less than 10,000 ppm, use the silver nitrate concentration equivalent to 0.019 chloride ion/mL (0.0282N). The multiplication factor in the equation then becomes 1,000.

Chloride (mg / L) =
$$\frac{\text{mL Silver Nitrate} \times 1,000}{\text{mL Filtrate}}$$

Alkalinity

Filtrate

2. Add two or three drops of phenolphthalein solution. If the sample turns pink, add sulfuric acid (N/50) from a pipette while stirring until it turns clear again.

If the sample is too dark to see the end point, use a pH meter instead. You will know the reaction has reached the end point when the pH drops to 8.3.

- 3. Record the volume of sulfuric acid (N/50) per milliliter of filtrate required to turn the sample clear again. This value is P_f.
- 4. Add two or three drops of methyl orange indicator solution to the same sample.
- 5. While stirring the sample, add sulfuric acid (N/50) from a pipette until the color changes from yellow to pink.

If the sample is too dark to see the end point, use a pH meter instead. You will know the reaction has reached the end point when the pH drops to 4.3.

- 6. Record the total volume of sulfuric acid (N/50) per milliliter of filtrate required to reach the final end point (including the amount required to reach P_f). This value is M_f.
- 1. Add 1 mL of fluid to a titration dish.
- 2. Dilute the sample to 25 50 mL with deionized water.
- 3. Add 4 or 5 drops of phenolphthalein indicator.
- 4. While stirring, titrate rapidly with sulfuric acid (N/50 or N/10) until the pink color disappears.

If the sample is too dark to see the end point, use a pH meter instead. You will know the reaction has reached the end point when the pH drops to 8.3.

- 5. Record the total volume of sulfuric acid required to reach the end point:
 - $P_m = mL$ of N/50 sulfuric acid

 $P_m = 5 \times mL$ of N/10 sulfuric acid

Alkalinity

Fluid

Lime

Procedure:

- 1. Determine the phenolphthalein alkalinity of the filtrate and the fluid $P_{\rm f}$ and $M_{\rm f}$.
- 2. Determine the volume fraction of water $(F_{\mbox{\tiny w}})$ in the fluid using a retort.

$$F_w = \frac{\% \text{ water by volume}}{100}$$

Calculations:

Lime (
$$lb_m / bbl$$
) = 0.26 ($P_m - F_w \times P_f$)

Lime (kg /
$$m^3$$
) = 0.742 ($P_m - F_w \times P_f$)

Total Hardness as Calcium

Procedure:

- 1. Add at least 1 mL of filtrate to the titration dish.
- 2. If the filtrate is too dark to see the end point:
 - a. Add 10 mL of bleach and stir.
 - b. Add 1 mL of acetic acid and stir.
 - c. Boil the sample for five minutes. Maintain the same volume by adding deionized water.
 - d. Cool the sample and wash the sides of the beaker with deionized water.
- 3. Dilute the sample to 50 mL with deionized water.
- 4. Add approximately 3 mL hardness buffer solution. Mix thoroughly.
- Add two to six drops of hardness indicator solution. Mix thoroughly.
 A deep red color will appear if calcium and/or magnesium are present.
- 6. While stirring, add titration solution from a pipette until the color changes from red to blue.
- 7. Record the volume of titration solution required to reach the end point.

Calculation:

Total Hardness as Calcium (mg / L) = $400 \times \frac{\text{Volume of Titrating Solution}}{\text{Volume of Filtrate}}$

Calcium Content

Procedure:

- 1. With a pipette, add at least 1 mL filtrate to a titration dish. Record the filtrate volume.
- 2. Dilute the filtrate to 50 mL with deionized water.
- 3. Add 10 to 15 mL of calcium buffer solution.
- 4. Add 3 mL of sodium hydroxide (1N).
- 5. Add on scoop of calcium indicator. If calcium is present, the solution will turn pink.

Do not use total hardness indicator or buffer solution.

- 6. Add 1 mL of masking agent and stir.
- 7. While stirring, add hardness titrating solution from a pipette until the color changes from red to blue.

Calculation:

Calcium Concentration (mg / L) = $400 \times \frac{\text{Volume of Titrating Solution (mL)}}{\text{Volume of Filtrate (mL)}}$

Magnesium Content

Procedure:

- 1. Determine the total hardness as calcium as described on page 6. Record the volume of titrating solution used as V₁.
- 2. Determine the calcium content as described above. Record the volume of titrating solution used as V_2 .

Calculation:

Magnesium Concentration (mg / L) = $(V_1 - V_2) \times 243$

Calcium Sulfate

Procedure:

- 1. Add 5 mL of drilling fluid to 245 mL deionized water.
- 2. Stir for 15 minutes.
- 3. Filter the diluted drilling fluid through a standard filter press. Keep only the clear portion of the filtrate. Discard the cloudy part.
- 4. Titrate 10 mL of clear filtrate to the EDTA end point. Record the volume of EDTA as V_t .
- 5. Titrate 1 mL of the original drilling fluid filtrate to the EDTA end point. Record the volume of EDTA as V_f .
- 6. Determine the volume fraction of water (F_w) in the fluid using a retort.

$$F_w = \frac{\% \text{ water by volume}}{100}$$

Calculation:

Total Calcium Sulfate (kg / m^3) = 6.79 × V_t

Total Calcium Sulfate (lb / bbl) = 2.38 × V_t

Undissolved Calcium Sulfate (kg / m^3) = (6.79 × V_t) - 1.37 × (V_f × F_w)

Undissolved Calcium Sulfate (lb / bbl) = $(2.38 \times V_t) - .48 \times (V_f \times F_w)$

Iron Count

Procedure:

- Add 3 drops of concentrated hydrochloric acid (37%) solution to 100 mL of clear water (not filtrate). Check the pH with a pH meter or pH paper. The pH of the solution should be 1 to 2.
- 2. Add 0.5 mL of hydrogen peroxide solution. The color that develops (usually a pale yellow) will be the end point color.
- 3. Add 1.0 mL of iron indicator solution. A purple color will develop.
- 4. Add 0.5 mL of iron buffer solution. The pH should be between 2 and 3. Check the pH with a pH meter or pH paper and add additional buffer solution, if necessary.
- 5. Titrate with total hardness titrating (EDTA) solution (1 mL = 20 EPM Ca & Mg) back to the same color developed in step 2. If less than 1 mL of the 20 EPM titrating solution is used to reach the end point, repeat steps 1 through 4 and use the weak total hardness yitrating solution (1 mL = 2 EPM Ca & Mg) instead.

Calculations:

For 100 mL sample of water:

ppm Fe³⁺ = Total Hardness Titrating Solution, 20 EPM, mL × 5.6

ppm Fe³⁺ = Total Hardness Titrating Solution, 2 EPM, mL × 0.56

If it is necessary to convert to EPM Iron:

EPM Iron Fe³⁺ =
$$\frac{\text{ppm Iron Fe}^{+++}}{18.6}$$

Sulfide Ion (S⁻²)

Procedure:

- 1. Add 1 mL of lodine titrating solution to 50 mL of deionized water in a titrating dish.
- 2. Add 10 drops of Sulfide buffer solution and 20 drops of starch indicator solution.
- 3. With a pipette, add deionized water until the blue or red color completely disappears. Record the amount of water (in mL) required to reach the end point.

Sulfide Ion Content (mg / L) =
$$\frac{100}{\text{Water (mL)}}$$

- 4. If more than 100 mL of water are required to reach the end point, the concentration of sulfide ions is less than 1 mg / L.
 - a. Add 100 mL deionized water, 10 drops of buffer solution, and 20 drops of starch indicator solution to a titration dish.
 - b. With a pipette, add lodine titrating solution until a permanent blue color develops.

Sulfide Ion Content (mg / L) =
$$\frac{100}{\text{Titrating Solution (mL)}}$$

- 5. If less than 1 mL of water was required to reach the end point in step 3, the concentration is more than 100 mg / L.
 - a. Add 10 mL of iodine titration solution and 20 drops of starch indicator solution to 100 mL of deionized water in the titration dish.
 - b. With a pipette, add deionized water until the blue or red color disappears completely.

Sulfide Ion Content (mg / L) =
$$\frac{1000}{\text{Water (mL)}}$$

sulfide ion concentration is zero.

If one drop of iodine titrating solution produces a permanent blue color, the